Closed Bounded Subsets of \mathbb{E}^{n}

Definition A set $C \subset \mathbb{E}^{n}$ is called a bounded subset of \mathbb{E}^{n} if there exists a ball $B_{r}(p)=\{x \in$ $\left.\mathbb{E}^{n}| | x-p \mid<r\right\}$ such that $C \subset B_{r}(p)$.
Definition Let X be a set topological space and let $\mathscr{F}=\{U \mid U \subseteq X\}$ be a collection of subsets of X. Then \mathscr{F} is called a cover of X if The union of the elements of \mathscr{F} is all of X, i.e.

$$
\bigcup_{U \in \mathscr{F}} U=X
$$

\mathscr{F} is called an open cover of X if
(1) every $U \in \mathscr{F}$ is an open subset of X.
(2) The union of the elements of \mathscr{F} is all of X, i.e.

$$
\bigcup_{U \in \mathscr{F}} U=X
$$

\mathscr{F}^{\prime} is called a subcover of \mathscr{F} if
(1) $\mathscr{F}^{\prime} \subseteq \mathscr{F}$
(2) The union of the elements of \mathscr{F}^{\prime} is all of X, i.e.

$$
\bigcup_{U \in \mathscr{F}^{\prime}} U=X
$$

\mathscr{F}^{\prime} is called a finite subcover of \mathscr{F} if
(1) \mathscr{F}^{\prime} is a subcover of \mathscr{F}
(2) \mathscr{F}^{\prime} contains finite number of elements of \mathscr{F}.

Theorem A subset X of \mathbb{E}^{n} is closed and bounded if and only if every open cover \mathscr{F} of X (with the induced topology) has a finite subcover.
Motivated by this result we make the following definition.
Definition A topological space X is compact if every open cover of X has a finite subcover.
Remark With this terminology, the preceding Theorem can be restated as follows.
The closed bounded subsets of a Euclidean space are precisely those subsets which (when given the induced topology) are compact.

Properties of Compact Spaces

(Heine-Borel Theorem) A closed interval $[a, b]$ of the real line \mathbb{R} is compact.
Proof Let \mathscr{F} be an open cover of $[a, b]$. Define a subset X of $[a, b]$ by

$$
X=\{x \in[a, b] \mid[a, x] \text { is contained in the union of a finite subfamily of } \mathscr{F}\} .
$$

Since $a \in X$ and $X \subseteq[a, b], X \neq \emptyset$ and is bounded above by b, so $s=\sup X$ exists.

Claim

- $s \in X$, i.e $[a, s]$ is contained in the union of a finite subfamily of \mathscr{F}.

Proof Let $O \in \mathscr{F}$ such that $s \in O$. Since O is open, we can choose $\varepsilon>0$ such that $(s-\varepsilon, s] \subseteq O$. Also since $s=\sup X,[a, s-\varepsilon / 2]$ is contained in the union of some finite subfamily \mathscr{F}^{\prime} of $\mathscr{F},[a, s]=[a, s-\varepsilon / 2] \cup(s-\varepsilon, s]$ is contained in the union $\mathscr{F}^{\prime} \cup\{O\}$. This shows that $s \in X$.

- $s=b$

Proof Let $O \in \mathscr{F}$ such that $s \in O$. Suppose that $s<b$, there is $\varepsilon>0$ such that $(s-\varepsilon, s+$ $\varepsilon) \subseteq O$.
Since $s=\sup X,[a, s-\varepsilon / 2]$ is contained in the union of some finite subfamily \mathscr{F}^{\prime} of \mathscr{F}, $[a, s+\varepsilon / 2]=[a, s-\varepsilon / 2] \cup(s-\varepsilon, s+\varepsilon / 2]$ is contained in the union $\mathscr{F}^{\prime} \cup\{O\}$. This shows that $s<s+\varepsilon / 2 \in X$ and contradicting the fact that $s=\sup X$. Therefore $s=b$ and all of $[a, b]$ is contained in the union $\mathscr{F}^{\prime} \cup\{O\}$.

"Subdivision" Proof of Heine-Borel Theorem

Suppose that the Heine-Borel Theorem is false. Let \mathscr{F} be an open cover of $[a, b]$ which does not contain a finite subcover.

- Set $I_{1}=[a, b]$.
- Subdivide $[a, b]$ into 2 closed subintervals of equal length $\left[a, \frac{1}{2}(a+b)\right]$ and $\left[\frac{1}{2}(a+b), b\right]$. At least one of these must have the property that it is not contained in the union of any finite subfamily of \mathscr{F}. Select one of $\left[a, \frac{1}{2}(a+b)\right],\left[\frac{1}{2}(a+b), b\right]$ which has this property and call it I_{2}.
- Now repeat the process, bisecting I_{2} and selecting one half, called I_{3}, which is not contained in the union of any finite subfamily of \mathscr{F}.
- Continuing in this way, we obtain a nested sequence of closed intervals

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots \quad \text { with the length of } I_{n} \text { equals }\left|I_{n}\right|=\frac{b-a}{2^{n-1}} \quad \forall n=1,2, \ldots
$$

- For each $n \in \mathbb{N}$, let x_{n} be the left-hand end point of I_{n}. Since the sequence $\left\{x_{n}\right\}$ is monotonic increasing and bounded above, $p=\sup \left\{x_{n} \mid n \in \mathbb{N}\right\}$ exists. For each $n \in \mathbb{N}$, since $x_{n} \in I_{n}$ and $p=\lim _{k \rightarrow \infty} x_{k}$,

$$
\begin{aligned}
& \begin{array}{ccccccc}
& & & \\
\text {, } & & & p-\varepsilon & I_{n} & p+\varepsilon \\
\hline a=x_{1} & I_{1} & x_{2} & I_{1} & x_{3} \cdots x_{n} & p & b
\end{array} \\
& \left|x_{n}-p\right| \leq \sum_{k=n}^{\infty}\left|x_{k}-x_{k+1}\right| \leq \sum_{k=n}^{\infty} \frac{b-a}{2^{k}}=\frac{b-a}{2^{n-1}}=\left|I_{n}\right| \Longrightarrow p \in I_{n}
\end{aligned}
$$

and since $\lim _{n \rightarrow \infty}\left|I_{n}\right|=0$, we have

$$
\bigcap_{n=1}^{\infty} I_{n}=\{p\} .
$$

- Since $p \in[a, b]$, there is an open set $O \in \mathscr{F}$, an $\varepsilon>0$ and an $n \in \mathbb{N}$ such that $p \in O$, $(p-\varepsilon, p+\varepsilon) \cap[a, b] \subseteq O$ and $\left|I_{n}\right|<\varepsilon$. Also since $p \in I_{n}, I_{n} \subseteq(p-\varepsilon, p+\varepsilon) \cap[a, b] \subseteq O$, i.e. I_{n} is contained in a single element of \mathscr{F}, which is a contradiction to the choice of I_{n}.

Corollary A closed rectangular box $\prod_{k=1}^{n}\left[a_{k}, b_{k}\right]$ of \mathbb{R}^{n} is compact.
Theorem If X is a compact topological space and if $f: X \rightarrow Y$ is an onto continuous function, then Y is compact.

Remark Compactness is a topological property, i.e. if X is compact and if X is homeomorphic to Y, then Y is compact.
Proof Let \mathscr{F} be an open cover of Y. For each $O \in \mathscr{F}$, since $f: X \rightarrow Y$ is an onto continuous function, $f^{-1}(O)$ is an open subset of X and

$$
\mathscr{G}=\left\{f^{-1}(O) \mid O \in \mathscr{F}\right\}
$$

is an open cover of X, and the compactness of X implies that \mathscr{G} contains a finite subcover, say

$$
X=f^{-1}\left(O_{1}\right) \cup \cdots \cup f^{-1}\left(O_{k}\right) .
$$

Next since $f: X \rightarrow Y$ is an onto function, we have

$$
f\left(f^{-1}\left(O_{i}\right)\right)=O_{i} \text { for } 1 \leq i \leq k \text { and } Y=\bigcup_{i=1}^{k} f\left(f^{-1}\left(O_{i}\right)\right)=\bigcup_{i=1}^{k} O_{k}
$$

So $\left\{O_{i} \mid 1 \leq i \leq k\right\}$ is a finite subcover of \mathscr{F}. This shows that Y is compact.
Theorem If X is a compact topological space and if C is a closed subset of X, then C is compact.
Proof Let \mathscr{F} be a family of open subsets of X that covers C, i.e.

$$
C \subseteq \bigcup \mathscr{F}=\bigcup_{O \in \mathscr{F}} O
$$

Since $(X \backslash C) \cup \mathscr{F}$ is an open cover of X and since X is compact, there exist $O_{1}, O_{2}, \ldots, O_{k} \in \mathscr{F}$ such that

$$
X=\left(\bigcup_{i=1}^{k} O_{i}\right) \cup(X \backslash C) \Longrightarrow C \subseteq \bigcup_{i=1}^{k} O_{i}
$$

and $\left\{O_{i} \mid 1 \leq i \leq k\right\}$ is a finite subcover of \mathscr{F}. This shows that C is compact.
Definition A metric or distance function on a set X is a real-valued function $d: X \times X \rightarrow \mathbb{R}$ defined on the Cartesian product $X \times X$ such that for all $x, y, z \in X$:
(a) $d(x, y) \geq 0$ and equality holds if and only if $x=y$;
(b) $d(x, y)=d(y, x)$;
(c) $d(x, y)+d(y, z) \geq d(x, z)$.

A set X together with a metric d on it, usually denoted (X, d), is called a metric space (generated by $\left.\mathscr{B}=\left\{B_{r}(p) \mid p \in X, 0<r<1\right\}\right)$.
Definition A topological space X is called a Hausdorff space if two distinct points can always be surrounded by disjoint open sets, i.e.

$$
\forall p \neq q \in X, \exists \text { open subsets } U, V \text { of } X \text { such that } p \in U, q \in V \text { and } U \cap V=\emptyset .
$$

Theorem If A is a compact subset of a Hausdorff space X, and if $x \in X \backslash A$, then there exist disjoint neighborhoods of x and A. Therefore a compact subset of a Hausdorff space is closed.

Proof For each $z \in A$, since X is Hausdorff, let U_{z} and V_{z} be disjoint open subsets such that $x \in U_{z}$ and $z \in V_{z}$. Since

$$
A \subseteq \bigcup_{z \in A} V_{z},
$$

$\mathscr{F}=\left\{V_{z} \mid z \in A\right\}$ is an open cover of A, and since A is compact there exist a finite subcover $\left\{V_{z_{i}} \mid z_{i} \in A\right.$, for each $\left.1 \leq i \leq k\right\}$ of \mathscr{F} such that

$$
A \subseteq \bigcup_{i=1}^{k} V_{z_{i}}
$$

Let $V=\bigcup_{i=1}^{k} V_{z_{i}}$. Since $V_{z_{i}} \cap U_{z_{i}}=\emptyset$ and $x \in U_{z_{i}}$ for each $1 \leq i \leq k$, the sets $U=\bigcap_{i=1}^{k} U_{z_{i}}$ and V are disjoint open neighborhoods of x and A.
Theorem If X is a compact space, Y is a Hausdorff space and $f: X \rightarrow Y$ is a one-to-one, onto and continuous function, then $f: X \rightarrow Y$ is a homeomorphism.
Proof If C is a closed subset of X, since X is compact and $f: X \rightarrow Y$ is one-to-one, onto and continuous, C is compact in X and $\left(f^{-1}\right)^{-1}(C)=f(C)$ is compact and consequently closed in Y. So $f: X \rightarrow Y$ takes closed sets to closed sets which proves that $f^{-1}: Y \rightarrow X$ is continuous and $f: X \rightarrow Y$ is a homeomorphism.
(Bolzano-Weierstrass Property) An infinite set of points in a compact space must have a limit point, i.e. If S is an infinite subset of a compact space X, then $S^{\prime} \cap X \neq \emptyset$.
Proof Let X be a compact space and let S be a subset of X which has no limit point, i.e.

$$
S^{\prime} \cap X=\emptyset
$$

For each $x \in X$, since $x \notin S^{\prime}$, there is an open neighborhood $O(x)$ of x such that

$$
O(x) \cap S \backslash\{x\}=\emptyset \Longrightarrow O(x) \cap S= \begin{cases}\emptyset & \text { if } x \notin S \\ \{x\} & \text { if } x \in S\end{cases}
$$

By the compactness of X, the open cover $\{O(x) \mid x \in X\}$ has a finite subcover. But each set $O(x)$ contains at most one point of S and therefore S must be a finite set.
Theorem A continuous real-valued function defined on a compact space is bounded and attains its bounds.
Proof If $f: X \rightarrow \mathbb{R}$ is continuous and if X is compact, then $f(X)$ is compact. Therefore $f(X)$ is bounded closed subset of \mathbb{R} by a preceding theorem and there exist $x_{1}, x_{2} \in X$ such that

$$
f\left(x_{1}\right)=\sup (f(X)) \quad \text { and } \quad f\left(x_{2}\right)=\inf (f(X)) .
$$

(Lebesgue's Lemma) Let X be a compact metric space and let \mathscr{F} be an open cover of X. Then there exists a real number $\delta>0$ (called a Lebesgue number of \mathscr{F}) such that any subset of X of diameter less than δ is contained in some member of \mathscr{F}.
Definition Let A, B be subsets of the metric space (X, d). Then the diameter of A is defined by

$$
\operatorname{diam}(A)=\sup _{x, y \in A} d(x, y)
$$

and the distance $d(A, B)$ between A and B is defined by

$$
d(A, B)=\inf _{x \in A, y \in B} d(x, y)
$$

Proof If Lebesgue's Lemma is false, there exists a sequence $\left\{A_{n} \neq \emptyset \mid n \in \mathbb{N}\right\}$ of subsets of X such that

- $A_{n} \nsubseteq U$ for each $U \in \mathscr{F}, n \in \mathbb{N}$.
- $d\left(A_{n}\right)=\operatorname{diam}\left(A_{n}\right) \searrow 0\left(\right.$ diameter of A_{n} deceases to 0$)$.

For each $n=1,2, \ldots$, choose a point $x_{n} \in A_{n}$. Then the sequence $\left\{x_{n}\right\}$ contains

- either finitely many distinct points (in which case some point repeats infinitely times)
- or infinitely many distinct points (in which case $\left\{x_{n}\right\}$ has a limit point since X is compact).

Denote the repeated point, or limit point, by p. Then there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ converging to p. Since $p \in X$ and \mathscr{F} is an open cover of X, there is an open set $U \in \mathscr{F}$ containing p. Choose $\varepsilon>0$ such that $B_{\varepsilon}(p) \subseteq U$, and choose an integer k large enough so that:
(a) $d\left(A_{n_{k}}\right)<\varepsilon / 2 \Longrightarrow d\left(x_{n_{k}}, x\right)<\varepsilon / 2$ for all $x \in A_{n_{k}}$, and
(b) $d\left(x_{n_{k}}, p\right)<\varepsilon / 2 \Longleftrightarrow x_{n_{k}} \in B_{\varepsilon / 2}(p)$.

Thus we have

$$
d(x, p) \leq d\left(x, x_{n_{k}}\right)+d\left(x_{n_{k}}, p\right)<\varepsilon \quad \text { for all } x \in A_{n_{k}} \Longrightarrow A_{n_{k}} \subseteq B_{\varepsilon}(p) \subseteq U .
$$

This contradicts our initial choice of the sequence $\left\{A_{n}\right\}$.

Product Spaces

Definition Let X and Y be topological spaces and let \mathscr{B} denote the family of all subsets of $X \times Y$ of the form $U \times V$, where U is open in X and V is open in Y.
Since

- $\bigcup_{U \times V \in \mathscr{B}} U \times V=X \times Y$,
- $\left(U_{1} \times V_{1}\right) \cap\left(U_{2} \times V_{2}\right)=\left(U_{1} \cap U_{2}\right) \times\left(V_{1} \cap V_{2}\right) \in \mathscr{B}$ for any $U_{1} \times V_{1}, U_{2} \times V_{2} \in \mathscr{B}$,

\mathscr{B} is a base for a topology on $X \times Y$. This topology is called the product topology, and the set $X \times Y$, when equipped with the product topology, is called a product space.
In general, if $X_{1}, X_{2}, \ldots, X_{n}$ are topological spaces, the product topology on $X_{1} \times X_{2} \times \cdots \times X_{n}$ is the topology generated by the base $\mathscr{B}=\left\{U_{1} \times U_{2} \times \cdots \times U_{n} \mid U_{i}\right.$ is open in $\left.X_{i}, 1 \leq i \leq n\right\}$.
The functions $\pi_{i}: X_{1} \times \cdots \times X_{i} \times \cdots \times X_{n} \rightarrow X_{i}$ defined by $\pi_{i}\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right)=x_{i}$ for $1 \leq i \leq n$, are called projections.
Theorem If $X \times Y$ has the product topology \mathscr{T} then the projections are continuous functions and they take open sets to open sets. The product topology \mathscr{T} is the smallest topology on $X \times Y$ for which both projections are continuous.
Proof Suppose U is an open subset of X and V is an open subset of Y, since $\pi_{1}^{-1}(U)=U \times Y$ and $\pi_{2}^{-1}(V)=X \times V$ are open in the product topology \mathscr{T}, π_{1} and π_{2} are continuous.
Since the product topology \mathscr{T} is generated by the base $\mathscr{B}=\{U \times V \mid U$ is open in X, V is open in $Y\}$, and since $\pi_{1}(U \times V)=U$ is open in $X, \pi_{2}(U \times V)=V$ is open in Y for each $U \times V \in \mathscr{B}$, projections π_{1} and π_{2} are open mappings.
Let \mathscr{T}^{\prime} be a topology on $X \times Y$, so that both projections are continuous. So $\pi_{1}^{-1}(U) \cap \pi_{2}^{-1}(V) \in \mathscr{T}^{\prime}$ for any open subsets U of X and V of Y, and since

$$
U \times V=(U \times Y) \cap(X \times V)=\pi_{1}^{-1}(U) \cap \pi_{2}^{-1}(V) \in \mathscr{T}^{\prime} \Longrightarrow \mathscr{T} \subseteq \mathscr{T}^{\prime}
$$

This proves that the product topology \mathscr{T} the smallest topology on $X \times Y$ for which both projections are continuous.
Theorem A function $f: Z \rightarrow X \times Y$ is continuous if and only if the two composite functions (coordinate functions) $\pi_{1} \circ f: Z \rightarrow X, \pi_{2} \circ f: Z \rightarrow Y$ are both continuous.
Proof (\Longrightarrow) If $f: Z \rightarrow X \times Y$ is continuous, then $\pi_{1} \circ f$ and $\pi_{2} \circ f$ are continuous, by the continuity of the projections π_{1}, π_{2}.

(\Longleftarrow) If both $\pi_{1} \circ f$ and $\pi_{2} \circ f$ are continuous, then $f: Z \rightarrow X \times Y$ is continuous since for each basic open set $U \times V$ of $X \times Y$,

$$
f^{-1}(U \times V)=\left(\pi_{1} \circ f\right)^{-1}(U) \cap\left(\pi_{2} \circ f\right)^{-1}(V) \quad \text { is open in } Z .
$$

Theorem The product space $X \times Y$ is a Hausdorff space if and only if both X and Y are Hausdorff.

Proof (\Longrightarrow) Suppose that $X \times Y$ is Hausdorff. Given distinct points $x_{1}, x_{2} \in X$, we choose a point $y \in Y$ and find disjoint basic open sets $U_{1} \times V_{1}, U_{2} \times V_{2}$ in $X \times Y$ such that $\left(x_{1}, y\right) \in U_{1} \times V_{1}$ and $\left(x_{2}, y\right) \in U_{2} \times V_{2}$.
Then U_{1}, U_{2} are disjoint open neighborhoods of x_{1} and x_{2} in X. Therefore X is a Hausdorff space.
The argument for Y is similar.
(\Longleftarrow) Suppose that X and Y are both Hausdorff spaces. Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be distinct points of $X \times Y$. Then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$ (or both).
If $x_{1} \neq x_{2}$, since X is Hausdorff, there are disjoint open sets U_{1}, U_{2} in X such that $x_{1} \in U_{1}$ and $x_{2} \in U_{2}$. Since $\left(x_{1}, y_{1}\right) \in U_{1} \times Y,\left(x_{2}, y_{2}\right) \in U_{2} \times Y$ and $\left(U_{1} \times Y\right) \cap\left(U_{2} \times Y\right)=\emptyset, X \times Y$ is a Hausdorff space.
The argument for $y_{1} \neq y_{2}$ is similar.
Lemma Let X be a topological space and let \mathscr{B} be a base for the topology of X. Then X is compact if and only if every open cover of X by members of \mathscr{B} has a finite subcover.
Proof (\Longrightarrow) This is obvious since basis elements are open.
(\Longleftarrow) Suppose that every open cover of X by members of \mathscr{B} has a finite subcover, and let \mathscr{F} be an arbitrary open cover of X.
Since \mathscr{B} is a base for the topology of X, each member of \mathscr{F} is a union of members of \mathscr{B}. Let \mathscr{B}^{\prime} denote the family of those members of \mathscr{B} which are used in this process.
By construction we have

$$
\bigcup_{B \in \mathscr{B}^{\prime}} B=\bigcup_{U \in \mathscr{F}} U=X
$$

so \mathscr{B}^{\prime} is an open cover of X (by members of \mathscr{B}) and must therefore contain a finite subcover.
For each basic open set in this finite subcover, we select a single member of \mathscr{F} which contains it. This gives a finite subcover of \mathscr{F} and shows that X is compact.
Theorem The product space $X \times Y$ is compact if and only if both X and Y are compact.
Proof (\Longrightarrow) If $X \times Y$ is compact, then both X and Y are compact since the projections $\pi_{1}: X \times Y \rightarrow X, \pi_{2}: X \times Y \rightarrow Y$ are onto and continuous functions.
(\Longleftarrow) Suppose both X and Y are compact spaces and let \mathscr{F} be an open cover of $X \times Y$ by basic open sets of the form $U \times V$, where U is open in X and V is open in Y.
For each $x \in X$, consider the subset $\{x\} \times Y$ of $X \times Y$ with the induced topology. It is easy to check that

$$
\left.\pi_{2}\right|_{\{x\} \times Y}:\{x\} \times Y \rightarrow Y
$$

is a homeomorphism. In other words $\{x\} \times Y$ is just a copy of Y in $X \times Y$ which lies 'over' the point x. So $\{x\} \times Y$ is compact and we can find a finite subfamily $\left\{U_{i}^{x} \times V_{i}^{x} \mid 1 \leq i \leq n_{x}\right\}$ of \mathscr{F} whose union contains $\{x\} \times Y$. Since $x \in U_{i}^{x}$ for each $1 \leq i \leq n_{x}, U^{x}=\cap_{i=1}^{n_{x}} U_{i}^{x} \neq \emptyset$ and

$$
U^{x} \times Y \subseteq \bigcup_{i=1}^{n_{x}} U_{i}^{x} \times V_{i}^{x}
$$

the union of these sets contains more than $\{x\}$, it actually contains all of $U^{x} \times Y$.

Since the family $\left\{U^{x} \mid x \in X\right\}$ is an open cover of X, we can select a finite subcover $\left\{U^{x_{j}} \mid 1 \leq\right.$ $j \leq s\}$ of X such that $X=\bigcup_{i=j}^{s} U^{x_{j}}$ and

$$
X \times Y=\bigcup_{j=1}^{s}\left(U^{x_{j}} \times Y\right) \subseteq \bigcup_{j=1}^{s} \bigcup_{i=1}^{n_{x_{j}}}\left(U_{i}^{x_{j}} \times V_{i}^{x_{j}}\right)
$$

this implies that $X \times Y$ is compact since it can be covered by a finite subfamily $\left\{U_{i}^{x_{j}} \times V_{i}^{x_{j}} \mid\right.$ $\left.1 \leq j \leq s, 1 \leq i \leq n_{x_{j}}\right\}$ of \mathscr{F}.
Theorem A subset of \mathbb{E}^{n} is compact if and only if it is closed and bounded.

Connectedness

Definition Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty open subsets of X whose union is X. The space X is said to be connected if there does not exist a separation of X.
A space X is disconnected if there exists a separation U, V of X, or equivalently if there are subsets A, B of X such that

$$
A \neq \emptyset, B \neq \emptyset, \quad A \cup B=X, \bar{A} \cap B=A \cap \bar{B}=\emptyset .
$$

Note that $A \cup B=X, \bar{A} \cap B=A \cap \bar{B}=\emptyset \Longrightarrow \bar{A} \cup B=A \cup \bar{B}=X$ and the sets $A=X \backslash \bar{B}$ and $B=X \backslash \bar{A}$ are disjoint nonempty open (and closed) subsets of X.
Remark A space X is connected if and only if the only subsets of X that are both open and closed in X are the empty set and X itself.
$\operatorname{Proof}(\Longrightarrow)$ If A is a nonempty proper subset of X (i.e. $A \subsetneq X$) which is both open and closed in X, then the sets $U=A$ and $V=X \backslash A$ constitute a separation of X, since

$$
A, B \text { are open (and closed), disjoint, nonempty, and } A \cup B=X
$$

(\Longleftarrow) If U and V form a separation of X, then $U \neq \emptyset, U \neq X$, and $U=X \backslash V$ is both open and closed in X.

Theorem The real line \mathbb{R} is a connected space.
Proof Suppose $\mathbb{R}=A \cup B$, where $A \neq \emptyset, B \neq \emptyset$ and $A \cap B=\emptyset$.
Choose points $a \in A, b \in B$ and (without loss of generality) suppose that $a<b$. Let

$$
\text { Let } X=\{x \in A \mid x<b\} \text { and let } s=\sup X \leq b
$$

Since $\mathbb{R}=A \cup B$, either $s \in A$, or $s \notin A$.

- If $s \in A$, then $s \npreceq b$ since $b \in B$ and $A \cap B=\emptyset$. Also since $s=\sup X$, we have $(s, b) \subseteq B$ which implies that $s \in B^{\prime} \subseteq \bar{B}$ and thus $A \cap \bar{B} \neq \emptyset$.
- If $s \notin A$, then $s \in B$ since $A \cap B=\emptyset$. Also since $s=\sup X$, we have $s \in X^{\prime} \subseteq A^{\prime} \subseteq \bar{A}$ and thus $\bar{A} \cap B \neq \emptyset$.

Remark If we replace the real line \mathbb{R} by an interval I in the proof, we can show that any interval I is connected.

Theorem Let X be a nonempty subset of \mathbb{R}. Then X is connected if and only if X is an interval.
Proof (\Longrightarrow) If X is not an interval, then we can find points $a, b \in X$ and a point $p \notin X$ such that $a<p<b$.

Let $A=\{x \in X \mid x<p\}$ and let $B=X \backslash A \Longrightarrow A \neq \emptyset, B \neq \emptyset$ and $X=A \cup B$.
However since $X=\bar{X}=\bar{A} \cup \bar{B}, \bar{A} \subseteq X, \bar{B} \subseteq X$, and since $p \notin X$, note that

- if $x \in \bar{A}$, then $x \lesseqgtr p \Longrightarrow \bar{A}=A \Longrightarrow \bar{A} \cap B=A \cap B=\emptyset$,
- if $x \in \bar{B}$, then $p \ngtr x \Longrightarrow \bar{B}=B \Longrightarrow A \cap \bar{B}=A \cap B=\emptyset$.

This implies that X is not connected.
Theorem The following conditions on a space X are equivalent:
(a) X is connected.
(b) X and \emptyset are the only subsets of X which are both open and closed.
(c) X cannot be expressed as the union of two disjoint nonempty open sets.
(d) There are no onto continuous function from X to a discrete space which contains more than one point.

Proof

$[(a) \Longleftrightarrow(b)]$ done as in a preceding Remark above.
$[(b) \Longleftrightarrow(c)]$ done as in the Definition.
$[(c) \Rightarrow(d)]$ Suppose (c) is satisfied, and let Y be a discrete space with more than one point and let $f: X \rightarrow Y$ be an onto continuous function.
Break up Y as a union $U \cup V$ of two disjoint nonempty open sets. Then $X=\left[f^{-1}(U)\right] \cup\left[f^{-1}(V)\right]$ which is the union of two disjoint nonempty open sets, contradicting (c).
$[(d) \Rightarrow(a)]$ Let X be a space which satisfies (d) and suppose X is not connected. There exist $A, B \subseteq X$ such that

$$
A \neq \emptyset, B \neq \emptyset, \quad A \cup B=X \text { and } \bar{A} \cap B=A \cap \bar{B}=\emptyset
$$

Since \bar{A}, \bar{B} are closed, and $A=X \backslash \bar{B}, B=X \backslash \bar{A}, A, B$ are also open subsets of X. Define a function f from X to the subspace $\{-1,1\}$ of \mathbb{R} by

$$
f(x)=\left\{\begin{aligned}
-1 & \text { if } x \in A \\
1 & \text { if } x \in B
\end{aligned}\right.
$$

Then f is continuous and onto, contradicting (d) for X.
Theorem If X is a connected space and if $f: X \rightarrow Y$ is an onto continuous function, then Y is connected.

Proof If A is a subset of Y which is both open and closed, then $f^{-1}(A)$ is both open and closed in X. Since X is connected, $f^{-1}(A)$ is either X or \emptyset, which implies that A is Y or \emptyset. This proves that Y is connected.
Remark Replacing Y by the subspace $f(X)$ of Y, the proof implies that if X is a connected space and if $f: X \rightarrow Y$ is a continuous function, then $f(X)$ is connected.
Corollary If $h: X \rightarrow Y$ is a homeomorphism, then X is connected if and only if Y is connected. In brief, connectedness is a topological property of a space.
Theorem Let X be a topological space and let Z be a subset of X. If Z is connected and if Z is dense in X (i.e. $\bar{Z}=X$), then X is connected.
Proof Let A be a nonempty subset of X which is both open and closed. Since Z is dense in X, so $X=\bar{Z}=Z \cup Z^{\prime}$ and we claim:

$$
U \cap Z \neq \emptyset \quad \text { for each nonempty open subset } U \text { of } X \text {. }
$$

Claim holds since

$$
\text { if } U \cap Z=\emptyset \Longrightarrow U \cap Z^{\prime}=\emptyset \Longrightarrow U=U \cap X=U \cap\left(Z \cup Z^{\prime}\right)=(U \cap Z) \cup\left(Z \cap Z^{\prime}\right)=\emptyset
$$

Hence we have

$$
A \cap Z \neq \emptyset
$$

Since A is both open and closed in $X, A \cap Z$ is both open and closed in Z, and since Z is connected and $A \cap Z \neq \emptyset$, we deduce that

$$
A \cap Z=Z \Longrightarrow Z \subseteq A \Longrightarrow X=\bar{Z} \subseteq \bar{A}=A \subseteq X \Longrightarrow A=X
$$

This implies that X is connected.
Remark Note that if Z is a connected subset of a topological space X, then Z is a connected subset of the subspace \bar{Z}. Replacing X by \bar{Z}, the proof implies that \bar{Z} is connected. In fact, the proof implies the following Corollary holds.
Corollary If Z is a connected subset of a topological space X, and if $Z \subseteq Y \subseteq \bar{Z}$, then Y is connected. In particular, the closure \bar{Z} of Z is connected.
Proof Since the closure of Z in Y is all of Y and by applying the preceding theorem to the pair $Z \subseteq Y$, one can show that Y is connected.
Theorem Let \mathscr{F} be a family of subsets of a space X whose union is all of X. If each member of \mathscr{F} is connected, and if no two members of \mathscr{F} are separated from one another in X, then X is connected.
Proof Let A be a subset of X which is both open and closed. We shall show that A is either empty or equal to all of X.
For each $Z \in \mathscr{F}$, since Z is connected and $Z \cap A$ is both open and closed in $Z, Z \cap A=\emptyset$ or Z. Since $X=\bigcup_{Z \in \mathscr{F}} Z$, we must have

- either $Z \cap A=\emptyset$ for all $Z \in \mathscr{F} \Longrightarrow A=\emptyset$,
- or there is a $Z_{A} \in \mathscr{F}$ such that $Z_{A} \cap A \neq \emptyset \Longrightarrow Z_{A} \cap A=Z_{A}$ and $A \neq \emptyset \Longrightarrow Z_{A} \subseteq A$.

Suppose that $A \neq \emptyset$ and $A \neq X$, since $A, X \backslash A$ are disjoint open and closed nonempty subsets of X, there exist $Z_{A}, Z_{X \backslash A} \in \mathscr{F}$ such that
$Z_{A} \cap A=Z_{A}$ and $Z_{X \backslash A} \cap(X \backslash A)=Z_{X \backslash A} \Longrightarrow Z_{A} \subseteq A$ and $Z_{X \backslash A} \subseteq X \backslash A \Longrightarrow Z_{A} \cap Z_{X \backslash A}=\emptyset$
contradicting to the assumption that no two members of \mathscr{F} are separated from one another in X, so X is connected.
Theorem If X and Y are connected spaces then the product space $X \times Y$ is connected
Proof For each $x \in X$ and $y \in Y$, let $Z(x, y)=(\{x\} \times Y) \cup(X \times\{y\})$ and let $\mathscr{F}=\{Z(x, y) \mid$ $x \in X, y \in Y\}$. Since $\{x\} \times Y$ and $X \times\{y\}$ are connected and since $(\{x\} \times Y) \cap(X \times\{y\})=$ $\{(x, y)\} \neq \emptyset,(\{x\} \times Y) \cup(X \times\{y\})$ is connected.
Also since no two members of \mathscr{F} are separated from one another in $X \times Y$, and since $X \times Y=$ $\bigcup_{Z(x, y) \in \mathscr{F}} Z(x, y)$, the space $X \times Y$ is connected.

Definition An equivalence relation on a set X is a relation \sim on X having the following three properties:

- (Reflexivity) $x \sim x$ for every $x \in X$.
- (Symmetry) If $x \sim y$, then $y \sim x$.
- (Transitivity) If $x \sim y$ and $y \sim z$, then $x \sim z$.

The equivalence class of an element $x \in X$, denoted by $[x]$, is the set defined by

$$
[x]=\{y \in X \mid y \sim x\}
$$

It is easy to see that distinct equivalence classes are disjoint, i.e $[x] \cap[y]$ is either \emptyset or all of $[x]$.
Definition Given X, define an equivalence relation on X by setting $x \sim y$ if there is a connected subset of X containing both x and y. The equivalence class C_{x} of an element $x \in X$ is called a component (or "connected component") of X.

Remark

- Let C and D be connected subsets of X such that $C \cap D \neq \emptyset$. Then $C \cup D$ is connected.
- For each $x \in X$, the (connected) component C_{x} is the largest connected subset containing of x. Hence

$$
C_{x} \cap C_{y}=\text { either } \emptyset \text { or } C_{x}=C_{y} \quad \forall x, y \in X .
$$

Theorem Let X be a topological space and let C_{x} denote the component of X containing $x \in X$. Then

- For each $x \in X$, the component C_{x} is closed in X.
- For any $x, y \in X, C_{x} \cap C_{y}$ is either an empty set or all of $C_{x}=C_{y}$, i.e. distinct components are separated from one another in the space.

Proof Let C_{x} be a component of X containing x. Then C_{x} is connected, and so \bar{C}_{x} is connected by a preceding Corollary. Since C_{x} is an equivalence class of X, we must have $C_{x}=\bar{C}_{x}$ and C_{x} is closed.

If C_{x}, C_{y} are components of X such that $C_{x} \cap C_{y} \neq \emptyset$ then, since $C_{x} \cup C_{y}$ is a connected subset of X containing both C_{x} and C_{y}, we must have $C_{x} \cup C_{y}=C_{x}$ and $C_{x} \cup C_{y}=C_{y}$ which implies that $C_{x}=C_{y}$. So, distinct components are separated from one another in the space.

Joining Points by Paths

Definition Given points x and y of the topological space X, a path in X from x to y is a continuous function $\gamma:[a, b] \rightarrow X$ of some closed interval in the real line into X, such that $\gamma(a)=x$ and $\gamma(b)=y$. A space X is said to be path-connected if every pair of points of X can be joined by a path in X.
Remark One can define an equivalence relation on X by setting $x \sim y$ if there is a path in X joining x to y. This is an equivalence relation since

- For each $x \in X$, the path γ defined by

$$
\gamma(t)=x \quad t \in[a, b]
$$

is a path in X joining x to x.

- if γ is a path in X joining x to y, then $-\gamma$ defined by

$$
-\gamma(t)=\gamma(a+b-t) \quad t \in[a, b]
$$

is a (reversed) path in X joining y to x.

- if α, β are paths in X joining x to y and y to z respectively, then γ defined by

$$
\gamma(t)= \begin{cases}\alpha(2 t-a) & \text { if } \quad a \leq t \leq \frac{a+b}{2} \\ \beta(2 t-b) & \text { if } \quad \frac{a+b}{2} \leq t \leq b\end{cases}
$$

is a path in X joining x to z.
The equivalence classes are called the components (or "path-connected components") of X.
Theorem If X is a path-connected space, then X is connected.
Proof Suppose $X=A \cup B$ is a separation of X.
Let $\gamma:[a, b] \rightarrow X$ be any path in X. Since γ is continuous and $[a, b]$ is connected, the set $\gamma([a, b])$ is connected and, since

$$
\begin{aligned}
& \gamma([a, b])=\gamma([a, b]) \cap X=\gamma([a, b]) \cap(A \cup B)=(\gamma([a, b]) \cap A) \cup(\gamma([a, b]) \cap B), \\
\Longrightarrow \quad & \text { either }(\gamma([a, b]) \cap A)=\emptyset \text { or }(\gamma([a, b]) \cap B)=\emptyset .
\end{aligned}
$$

i.e. $\gamma([a, b])$ lies entirely in either A or B.

This implies that there does not exist any path in X joining a point in A to a point in B, contrary to the assumption that X is path connected.
Theorem If X is a connected open subset of the Euclidean space \mathbb{E}^{n}, then X is path-connected.
Proof Given $x \in X$, let $U(x)$ be the collection of points of X defined by

$$
U(x)=\{y \in X \mid y \text { can be joined to } x \text { by a path in } X\} .
$$

Then $U(x) \neq \emptyset$ and $U(x)$ is a path connected subset (component) of X.
Claim For each $x \in X, U(x)$ is open in X.
Proof of Claim Let $y \in U(x)$, since X is open in \mathbb{E}^{n}, there exists a ball $B_{r}(y)$ such that $B_{r}(y) \subseteq X$. If $z \in B_{r}(y)$, since z can be joined to x by a path in X and $U(x)$ is a path-connected component of X, we must have $z \in U(x)$ and $B_{r}(y) \subseteq X$. This implies that $U(x)$ is open in X.
Claim For each $x \in X, U(x)$ is closed in X.
Proof of Claim Since

$$
X \backslash U(x)=\bigcup_{y \in X \backslash U(x)} U(y)=\text { union of open subset } U(y) \text { of } X,
$$

$X \backslash U(x)$ is open in X and thus $U(x)$ is closed in X.
Since X is connected and $U(x) \neq \emptyset$, we must have $U(x)=X$ which implies that X is pathconnected.

The converse is not true: the topologist's sine curve is connected but not path-connected.
Example Let $Z=\{(x, \sin (1 / x)) \mid 0<x \leq 1\}, Y=\{0\} \times[-1,1]$ and $X=Y \cup Z \subset \mathbb{R}^{2}$ be the topologist's sine curve. Since Z is path-connected, it is connected and $\bar{Z}=X$ is connected.

To see why it's not path-connected, suppose $f:[0,1] \rightarrow X$ is continuous and $f(0)=(0,0)$, $f(1)=(1, \sin 1)$.

Let $\pi_{x}, \pi_{y}: X \rightarrow \mathbb{R}$ be projection maps to the $x-$ and y-coordinates respectively. Since $\pi_{x} \circ f$ is continuous on $[0,1], \pi_{x} \circ f(0)=0<1=\pi_{x} \circ f(1)$, so its image $\operatorname{im}\left(\pi_{x} \circ f\right)$ is the whole $[0,1]$ by the intermediate value theorem and hence, $Z \subset \operatorname{im}(f)$. Pick points $t_{0}, t_{1}, t_{2}, \ldots \in[0,1]$ such that $f\left(t_{n}\right)=\left(\left(2 n \pi+\frac{\pi}{2}\right)^{-1}, 1\right)$.
Since $[0,1]$ is compact, $\pi_{y} \circ f$ is uniformly continuous. So for $\varepsilon=1>0$, there exists $\delta>0$ such that whenever $t, u \in[0,1]$ satisfy $|t-u|<\delta$, we have $\left|\pi_{y}(f(t))-\pi_{y}(f(u))\right|<1$.
Since $\left\{t_{k}\right\}_{k=0}^{\infty}$ is an infinite sequence in the compact set $[0,1]$, it contains a convergent subsequence, which is again denoted by $\left\{t_{k}\right\}_{k=0}^{\infty}$, and with the $\delta>0$, there is an $m \in \mathbb{N}$ such that if $n>m$, then $\left|t_{m}-t_{n}\right|<\delta$.
Since $Z \subset \operatorname{im}(f), f\left(t_{m}\right)=\left(\left(2 m \pi+\frac{\pi}{2}\right)^{-1}, 1\right)$ and $f\left(t_{n}\right)=\left(\left(2 n \pi+\frac{\pi}{2}\right)^{-1}, 1\right)$, there's a point u between t_{m} and t_{n} such that $f(u)=\left(\left(2 m \pi+\frac{3 \pi}{2}\right)^{-1},-1\right)$. Then t_{m} and u satisfy $\left|t_{m}-u\right|<$ $\left|t_{m}-t_{n}\right|<\delta$, but $\left|\pi_{y}\left(f\left(t_{m}\right)\right)-\pi_{y}(f(u))\right|=|1-(-1)|=2>1$ which is a contradiction.

