Topology Study Guide 2 Fall 2022

Closed Bounded Subsets of E"

Definition A set C' C E" is called a bounded subset of E" if there exists a ball B,.(p) = {z €
E™ | |z — p| < r} such that C' C B,(p).

Definition Let X be a set topological space and let .# = {U | U C X} be a collection of subsets
of X. Then .7 is called a cover of X if The union of the elements of .% is all of X, i.e.

Jv=x
UeF
% is called an open cover of X if

(1) every U € % is an open subset of X.
(2) The union of the elements of .# is all of X i.e.

Uv=x

UesF

ZF'is called a subcover of .Z if
(1) F'C 7
(2) The union of the elements of .#’ is all of X, i.e.

U uv=x

Ues’!
F' is called a finite subcover of Z if

(1) Z' is a subcover of #

(2) Z' contains finite number of elements of .7.
Theorem A subset X of E" is closed and bounded if and only if every open cover .# of X (with
the induced topology) has a finite subcover.
Motivated by this result we make the following definition.
Definition A topological space X is compact if every open cover of X has a finite subcover.
Remark With this terminology, the preceding Theorem can be restated as follows.

The closed bounded subsets of a Euclidean space are precisely those subsets which (when given
the induced topology) are compact.

Properties of Compact Spaces
(Heine-Borel Theorem) A closed interval [a, b] of the real line R is compact.

Proof Let .# be an open cover of [a, b]. Define a subset X of [a, b] by
X ={z € a,b] | [a,z] is contained in the union of a finite subfamily of .%}.

Since a € X and X C [a,b], X # 0 and is bounded above by b, so s = sup X exists.

Claim
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s € X, i.e [a, s] is contained in the union of a finite subfamily of .7

Proof Let O € % such that s € O. Since O is open, we can choose ¢ > 0 such that
(s —¢e,8] € O. Also since s = sup X, [a,s — /2] is contained in the union of some finite
subfamily .#’ of .#, [a,s| = [a,s —¢/2]U (s — ¢, s] is contained in the union .#’'U{O}. This
shows that s € X.

s—¢/2

a s —¢€ S b

s=0

Proof Let O € .% such that s € O. Suppose that s < b, there is € > 0 such that (s —e, s+
g) CO.

Since s = sup X, [a,s — ¢/2] is contained in the union of some finite subfamily %’ of .7,
la,s +¢€/2] = [a,s — /2] U (s — &,s + £/2] is contained in the union .#" U {O}. This shows

that s < s+¢/2 € X and contradicting the fact that s = sup X. Therefore s = b and all of
la, b] is contained in the union .#' U {O}.

s+¢e/2

| | | | |
T T T T T

a s—¢ s s+e b

“Subdivision” Proof of Heine-Borel Theorem

Suppose that the Heine-Borel Theorem is false. Let % be an open cover of [a, b] which does not
contain a finite subcover.

Set ]1 = [CL, b]

1 1
Subdivide [a, b] into 2 closed subintervals of equal length |a, E(a + b)] and [§(a +b),b]. At

least one of these must have the property that it is not contained in the union of any finite

1
subfamily of .%. Select one of [a, 5(@ +b)], [=(a + b),b] which has this property and call it

2
Is.

Now repeat the process, bisecting I and selecting one half, called I3, which is not contained
in the union of any finite subfamily of .#

Continuing in this way, we obtain a nested sequence of closed intervals

b—a

I DI, 213D ... with the length of I, equals |[,,| = Py

Vn=12,...
For each n € N, let z,, be the left-hand end point of 7,,. Since the sequence {z,} is monotonic
increasing and bounded above, p = sup{z,, | n € N} exists. For each n € N, since z,, € I,

and p = lim zy,
k—o00

p—e I, p+e

p|<2]xk—xk+1|<z Qk 2n1 = |I,| = pel,
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and since lim |I,,| = 0, we have
n— oo

ﬂzp}

e Since p € [a,b], there is an open set O € %, an € > 0 and an n € N such that p € O,
(p—e,p+e)Na,b] CO and |I,| <e. Alsosince p € I,,, I, C (p—¢e,p+¢e)NJa,b] C O, ie.
I, is contained in a single element of .%, which is a contradiction to the choice of I,,.

n
Corollary A closed rectangular box H[ak, bi] of R™ is compact.
k=1
Theorem If X is a compact topological space and if f : X — Y is an onto continuous function,
then Y is compact.

Remark Compactness is a topological property, i.e. if X is compact and if X is homeomorphic
to Y, then Y is compact.

Proof Let .# be an open cover of Y. For each O € %, since f : X — Y is an onto continuous
function, f~'(O) is an open subset of X and

9 ={f0)|0e 7}

is an open cover of X, and the compactness of X implies that ¢ contains a finite subcover, say

X =fHO)U---UfHOp).

Next since f: X — Y is an onto function, we have

k k
FUH0)) =0 for 1 <i<kandY = f(f71(0:) = O
i=1 i=1

So {O; | 1 <i < k} is a finite subcover of .#. This shows that Y is compact.
Theorem If X is a compact topological space and if C'is a closed subset of X, then C'is compact.

Proof Let .# be a family of open subsets of X that covers C, i.e.

cclyz=Jo

oes

Since (X \ C)U.Z is an open cover of X and since X is compact, there exist Oy, Os,...,Of € .F

such that
<U0> (X\C) = (JCUO

i=1
and {O; | 1 <i <k} is a finite subcover of .%. This shows that C' is compact.

Definition A metric or distance function on a set X is a real-valued function d : X x X = R
defined on the Cartesian product X x X such that for all z, y, z € X:

(a) d(x,y) > 0 and equality holds if and only if z = y;

(b) d(z,y) = d(y, v);
(c) d(z,y) +d(y, z) > d(z, 2).
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A set X together with a metric d on it, usually denoted (X, d), is called a metric space (generated
by 2 ={B,(p) |pe X, 0 <r<1}).

Definition A topological space X is called a Hausdorff space if two distinct points can always
be surrounded by disjoint open sets, i.e.

Vp+#qe X, 3open subsets U, V of X suchthat pe U, g€V and UNV = 0.

Theorem If A is a compact subset of a Hausdorff space X, and if x € X \ A, then there exist
disjoint neighborhoods of x and A. Therefore a compact subset of a Hausdorff space is closed.

Proof For each z € A, since X is Hausdorff, let U, and V, be disjoint open subsets such that
r € U, and z € V,. Since

Ac v,

zEA

F ={V, | z € A} is an open cover of A, and since A is compact there exist a finite subcover
{V,. | z € A, for each 1 < i <k} of .Z such that

k
AQU%.
i=1

k k

Let V = UVZ Since V., NU,, = 0 and x € U,, for each 1 < i < k, the sets U = ﬂUa and V
=1 1=1

are disjoint open neighborhoods of x and A.

Theorem If X is a compact space, Y is a Hausdorff space and f : X — Y is a one-to-one, onto
and continuous function, then f : X — Y is a homeomorphism.

Proof If C is a closed subset of X, since X is compact and f : X — Y is one-to-one, onto and
continuous, C'is compact in X and (f _1)71 (C) = f(C) is compact and consequently closed in
Y. So f: X — Y takes closed sets to closed sets which proves that f~! : Y — X is continuous
and f: X — Y is a homeomorphism.

(Bolzano-Weierstrass Property) An infinite set of points in a compact space must have a
limit point, i.e. If S is an infinite subset of a compact space X, then S’ N X # (.

Proof Let X be a compact space and let S be a subset of X which has no limit point, i.e.
S'NX =0.
For each x € X, since x ¢ S’, there is an open neighborhood O(x) of x such that

0 ifx ¢S

O@jﬂS\hﬁz@::>O@ﬂﬂSZ{{@ if z €9

By the compactness of X, the open cover {O(z) | z € X} has a finite subcover. But each set
O(z) contains at most one point of S and therefore S must be a finite set.

Theorem A continuous real-valued function defined on a compact space is bounded and attains
its bounds.

Proof If f: X — R is continuous and if X is compact, then f(X) is compact. Therefore f(X)
is bounded closed subset of R by a preceding theorem and there exist x1, x5 € X such that

f(z1) = sup(f(X)) and  f(zz) = inf(f(X)).
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(Lebesgue’s Lemma) Let X be a compact metric space and let .%# be an open cover of X.
Then there exists a real number § > 0 (called a Lebesgue number of .%) such that any subset of
X of diameter less than ¢ is contained in some member of .%.

Definition Let A, B be subsets of the metric space (X, d). Then the diameter of A is defined by

diam (A) = sup d(z,y)

T, yeA

and the distance d(A, B) between A and B is defined by

d(A,B) = inf d(z,vy).

z€A,yEB

Proof If Lebesgue’s Lemma is false, there exists a sequence {A,, # () | n € N} of subsets of X
such that

e A, ZUforeachU € #, neN.
o d(A,) = diam (A,) N\, 0 (diameter of A, deceases to 0).

For each n =1,2,..., choose a point z, € A,. Then the sequence {z,} contains

e cither finitely many distinct points (in which case some point repeats infinitely times)

e or infinitely many distinct points (in which case {x,} has a limit point since X is compact).

Denote the repeated point, or limit point, by p. Then there is a subsequence {z,, } of {z,}
converging to p. Since p € X and % is an open cover of X, there is an open set U € F
containing p. Choose £ > 0 such that B.(p) C U, and choose an integer k large enough so that:

(a) d(A,,) <e/2 = d(z,,,x) <e/2forall z € A, , and
(b) d(xp,,p) <e/2 <= xn, € B.a2(p).

Thus we have
d(z,p) < d(z,xn,) + d(zy,,p) <e forallze A, = A, C B.(p) CU.

This contradicts our initial choice of the sequence {4, }.
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Product Spaces

Definition Let X and Y be topological spaces and let #Z denote the family of all subsets of
X x Y of the form U x V, where U is open in X and V is open in Y.

Since
. U UxV=XxY,

UxVer

o (Ui xVi)N(Uyx Vo) = (UiNUy) x (ViNV,) € A for any Uy x Vi, Uy x Vi € A,

Us

Vs

%
o Gt x hn W)

Ui

A is a base for a topology on X x Y. This topology is called the product topology, and the set
X x Y, when equipped with the product topology, is called a product space.

In general, if X7, Xs,..., X, are topological spaces, the product topology on X; x X5 x --- x X,
is the topology generated by the base Z = {U; x Uy x --- x U, | U; is open in X;, 1 <i < n}.
The functions m; : X3 x -+ x X; x --- x X, = X; defined by m;(z1,--+ , 2, ,x,) = x; for
1 <4 < n, are called projections.

Theorem If X x Y has the product topology .7 then the projections are continuous functions

and they take open sets to open sets. The product topology 7 is the smallest topology on X xY
for which both projections are continuous.

Proof Suppose U is an open subset of X and V is an open subset of Y, since 7, (U) = U x Y
and 7, (V) = X x V are open in the product topology .7, m; and 7, are continuous.

Since the product topology .7 is generated by the base 8 = {UxV | U is open in X, V is open in Y},
and since 1 (Ux V) = Uisopenin X, m(UxV) = Visopenin Y for each UxV € A, projections
m, and 7y are open mappings.

Let .7’ be a topology on X x Y, so that both projections are continuous. So 7; H(U)N7y (V) € T’
for any open subsets U of X and V of Y, and since

UxV=UxY)N(XxV)=rm'(U)Nnm,*(V)e T —= T C T

This proves that the product topology .7 the smallest topology on X x Y for which both
projections are continuous.

Theorem A function f: Z — X x Y is continuous if and only if the two composite functions
(coordinate functions) m o f: Z — X, myo f : Z — Y are both continuous.

Proof (=) If f : Z — X x Y is continuous, then 7 o f and 7y o f are continuous, by the
continuity of the projections 7y, 5.
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Y
' (U)
//—\ UxV
v 4 V)
X
U
——

(«<=) If both m o f and my o f are continuous, then f: Z — X X Y is continuous since for each
basic open set U x V of X x Y,

fHUXV)=(mof) " U)N(mp0 f)~1(V) is open in Z.

Theorem The product space X x Y is a Hausdorff space if and only if both X and Y are
Hausdorft.

Proof (=) Suppose that X x Y is Hausdorff. Given distinct points x1, x5 € X, we choose a
point y € Y and find disjoint basic open sets U; x V1, Uy x V4 in X x Y such that (x1,y) € Uy x V}
and (z2,y) € Uy x V.

Then Uy, Uy are disjoint open neighborhoods of x; and zo in X. Therefore X is a Hausdorff
space.

The argument for Y is similar.

(«<=) Suppose that X and Y are both Hausdorff spaces. Let (x1,7:1) and (x2,ys) be distinct
points of X x Y. Then either x; # x5 or y; # yo (or both).

If x1 # x4, since X is Hausdorff, there are disjoint open sets Uy, Us in X such that x; € U; and
x9 € Us. Since (x1,y1) € Uy XY, (22,92) € Uy x Y and (U xY)N (U xY) =0, X xY is a
Hausdorft space.

The argument for 1y, # 1o is similar.

Lemma Let X be a topological space and let & be a base for the topology of X. Then X is
compact if and only if every open cover of X by members of Z has a finite subcover.

Proof (=) This is obvious since basis elements are open.

(«<=) Suppose that every open cover of X by members of % has a finite subcover, and let .% be
an arbitrary open cover of X.

Since 4 is a base for the topology of X, each member of .% is a union of members of %. Let %’
denote the family of those members of Z which are used in this process.

UB=Jv=x

Be#’ UesF

By construction we have
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so #A' is an open cover of X (by members of Z) and must therefore contain a finite subcover.

For each basic open set in this finite subcover, we select a single member of .%# which contains
it. This gives a finite subcover of .# and shows that X is compact.

Theorem The product space X x Y is compact if and only if both X and Y are compact.

Proof (=) If X x Y is compact, then both X and Y are compact since the projections
X XY > X, m: X XY — Y are onto and continuous functions.

(<:) Suppose both X and Y are compact spaces and let .# be an open cover of X XY by basic
open sets of the form U x V, where U is open in X and V is open in Y.

For each = € X, consider the subset {z} x Y of X x Y with the induced topology. It is easy to
check that
Tol gy {2} XY =Y

is a homeomorphism. In other words {z} x Y is just a copy of Y in X x Y which lies ‘over’ the
point z. So {z} x Y is compact and we can find a finite subfamily {U; x V;* | 1 <i <n,} of &
whose union contains {x} x Y. Since x € U? for each 1 <i < n,, U* =N, U’ # 0 and

UxxYQEjfoVf,

i=1

the union of these sets contains more than {z}, it actually contains all of U* x Y.

T N U*xY
XxY i
Y i i
: Y
: (/o//{x} %
(T
7
X U~*

Since the family {U”* |z € X } is an open cover of X, we can select a finite subcover {U" | 1 <

j < s} of X such that X = UUIJ and
i=j

Ng

<l

XxY = U (U™ xY) go U?‘ffxvff)

7j=1

||C

this implies that X x Y is compact since it can be covered by a finite subfamily {U;” x V;"/ |
1<j<s5,1<i<n,}ofF

Theorem A subset of E" is compact if and only if it is closed and bounded.
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Connectedness

Definition Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty
open subsets of X whose union is X. The space X is said to be connected if there does not exist
a separation of X.

A space X is disconnected if there exists a separation U, V' of X, or equivalently if there are
subsets A, B of X such that

A40, B#£0), AUB=X, ANB=ANDB=0.
Note that AUB =X, ANB=ANB=0 — AUB=AUB =X and the sets A= X \ B
and B = X \ A are disjoint nonempty open (and closed) subsets of X.

Remark A space X is connected if and only if the only subsets of X that are both open and
closed in X are the empty set and X itself.

Proof (=) If A is a nonempty proper subset of X (i.e. A C X) which is both open and closed
in X, then the sets U = A and V = X \ A constitute a separation of X, since

A, B are open (and closed), disjoint, nonempty, and AU B = X.

(<) If U and V form a separation of X, then U # 0, U # X, and U = X \ V is both open and
closed in X.

Theorem The real line R is a connected space.
Proof Suppose R = AU B, where A # (), B# () and ANB = 0.
Choose points a € A, b € B and (without loss of generality) suppose that a < b. Let

Let X ={x € A|xz <b} and let s =sup X <b.
Since R = AU B, either s € A, or s ¢ A.

o If s € A, then s < bsince b € B and AN B = (). Also since s = sup X, we have (s,b) C B
which implies that s € B’ C B and thus AN B # (.
o If s ¢ A, then s € B since AN B = (). Also since s = sup X, we have s € X' C A’ C A and
thus AN B # 0.
Remark If we replace the real line R by an interval I in the proof, we can show that any interval
I is connected.
Theorem Let X be a nonempty subset of R. Then X is connected if and only if X is an interval.
Proof (=) If X is not an interval, then we can find points a, b € X and a point p ¢ X such
that a < p < 0.
Let A={r e X |z <p}andlet B=X\A = A#0), B#0and X = AUB.
However since X = X = AUB, AC X, B C X, and since p ¢ X, note that

eifrcAthnr<p = A=A = ANB=ANB=1,
eifrc B thenp>r = B=B = ANB=ANB=0.

This implies that X is not connected.

Theorem The following conditions on a space X are equivalent:
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(a) X is connected.

(b) X and () are the only subsets of X which are both open and closed.

(¢) X cannot be expressed as the union of two disjoint nonempty open sets.
)

(d) There are no onto continuous function from X to a discrete space which contains more than
one point.

Proof
[(a) <= (b)] done as in a preceding Remark above.
[(b) <= (c)] done as in the Definition.

[(c) = (d)] Suppose (c) is satisfied, and let Y be a discrete space with more than one point and
let f: X — Y be an onto continuous function.

Break up Y as a union UUV of two disjoint nonempty open sets. Then X = [f~(U)]U[f~'(V)]
which is the union of two disjoint nonempty open sets, contradicting (c).

[(d) = (a)] Let X be a space which satisfies (d) and suppose X is not connected. There exist
A, B C X such that
A#0, B#0, AUB=Xand ANB=ANB={.

Since A, B are closed, and A = X \ B, B= X \ A, A, B are also open subsets of X. Define a
function f from X to the subspace {—1, 1} of R by

—1 fze A
f(w)_{ 1 ifzeB.

Then f is continuous and onto, contradicting (d) for X.

Theorem If X is a connected space and if f : X — Y is an onto continuous function, then Y is
connected.

Proof If A is a subset of Y which is both open and closed, then f~*(A) is both open and closed
in X. Since X is connected, f~1(A) is either X or (), which implies that A is Y or (). This proves
that Y is connected.

Remark Replacing Y by the subspace f(X) of Y, the proof implies that if X is a connected
space and if f: X — Y is a continuous function, then f(X) is connected.

Corollary If h : X — Y is a homeomorphism, then X is connected if and only if Y is connected.
In brief, connectedness is a topological property of a space.

Theorem Let X be a topological space and let Z be a subset of X. If Z is connected and if Z
is dense in X (i.e. Z = X), then X is connected.

Proof Let A be a nonempty subset of X which is both open and closed. Since Z is dense in X,
so X =7 =7UZ" and we claim:

UNZ #( for each nonempty open subset U of X.
Claim holds since
HfUNZ=0 = UNnZ' =0 = U0U=UnNX=UNZUZ)=UnZ)u(ZnZzZ)=10

Hence we have
ANZ#0.
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Since A is both open and closed in X, AN Z is both open and closed in Z, and since Z is
connected and AN Z # (), we deduce that

ANZ =7 — ZCA —= X=7CA=ACX — A=X.

This implies that X is connected.

Remark Note that if Z is a connected subset of a topological space X, then Z is a connected
subset of the subspace Z. Replacing X by Z, the proof implies that Z is connected. In fact, the
proof implies the following Corollary holds.

Corollary If Z is a connected subset of a topological space X, and if Z C'Y C Z, then Y is
connected. In particular, the closure Z of Z is connected.

Proof Since the closure of Z in Y is all of Y and by applying the preceding theorem to the pair
Z CY, one can show that Y is connected.

Theorem Let .% be a family of subsets of a space X whose union is all of X. If each member of
% is connected, and if no two members of .%# are separated from one another in X, then X is
connected.

Proof Let A be a subset of X which is both open and closed. We shall show that A is either
empty or equal to all of X.

For each Z € .7, since Z is connected and Z N A is both open and closed in Z, ZN A ={ or Z.
Since X = U Z, we must have

ZeF
e cither ZNA=0forall Z e .¥% — A=,
e or thereisa Z4 € .# suchthat ZyNA#0) — ZyNA=Zy4and A#40) = Z, C A.

Suppose that A # () and A # X, since A, X \ A are disjoint open and closed nonempty subsets
of X, there exist Z4, Zx\a € # such that

ZANA=74 and ZX\Aﬂ(X\A):ZX\A — /4 C A and ZX\AQX\A - ZAﬂZX\A:@

contradicting to the assumption that no two members of .% are separated from one another in
X, so X is connected.

Theorem If X and Y are connected spaces then the product space X x Y is connected

Proof For each x € X and y € Y, let Z(z,y) = ({z} x Y)U (X x {y}) and let F = {Z(z,y) |

x € X,y €Y} Since {z} x Y and X x {y} are connected and since ({z} x V)N (X x {y}) =

{(x, )} #0, {z} x Y)U (X x {y}) is connected.

Also since no two members of % are separated from one another in X x Y, and since X x Y =
U Z(x,y), the space X X Y is connected.

Z(z,y)eF
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/ // | XxY

Definition An equivalence relation on a set X is a relation ~ on X having the following three
properties:

o (Reflexivity) z ~ x for every x € X.

e (Symmetry) If x ~ y, then y ~ x.

o (Transitivity) If x ~ y and y ~ z, then x ~ z.

The equivalence class of an element x € X, denoted by [z], is the set defined by
(7] ={y e X [y ~z}.

It is easy to see that distinct equivalence classes are disjoint, i.e [z] N [y] is either @ or all of [z].

Definition Given X, define an equivalence relation on X by setting x ~ y if there is a connected
subset of X containing both x and y. The equivalence class C, of an element x € X is called a
component (or “connected component”) of X.

Remark

e Let C and D be connected subsets of X such that C' N D # (). Then C'U D is connected.

e For each x € X, the (connected) component C, is the largest connected subset containing

of z. Hence
C,NC, = cither Qor C, =C, Va,yeX.

Theorem Let X be a topological space and let C, denote the component of X containing x € X.
Then

e For each z € X, the component C,, is closed in X.

e For any z, y € X, C,NC, is either an empty set or all of C, = (), i.e. distinct components

are separated from one another in the space.

Proof Let C, be a component of X containing z. Then C, is connected, and so C, is connected
by a preceding Corollary. Since C, is an equivalence class of X, we must have C, = C, and C,
is closed.

Page 12



Topology Study Guide 2 (Continued)

If C,, C, are components of X such that C;, N C, # 0 then, since C,; U Cy is a connected subset
of X containing both C, and C), we must have C, UC, = C, and C, U C, = C, which implies
that C, = C,. So, distinct components are separated from one another in the space.

Joining Points by Paths

Definition Given points x and y of the topological space X, a path in X from x to y is a
continuous function 7 : [a,b] — X of some closed interval in the real line into X, such that
v(a) = z and v(b) = y. A space X is said to be path-connected if every pair of points of X can
be joined by a path in X.

Remark One can define an equivalence relation on X by setting x ~ y if there is a path in X
joining z to y. This is an equivalence relation since

e For each z € X, the path ~ defined by
v(t) =z t€a,b
is a path in X joining x to x.
e if v is a path in X joining = to y, then —~ defined by
—(t) =v(a+b—1t) € la,b]
is a (reversed) path in X joining y to x.
e if o, B are paths in X joining x to y and y to z respectively, then v defined by
b
a2t — a) if a§t§i

£ —
" Bat—p) i 40

2
<t<b

is a path in X joining x to z.

The equivalence classes are called the components (or “path-connected components”) of X.
Theorem If X is a path-connected space, then X is connected.
Proof Suppose X = AU B is a separation of X.

Let 7y : [a,b] — X be any path in X. Since 7y is continuous and [a, b] is connected, the set v([a, b])
is connected and, since

([a, 0]) = ¥(la, b)) N X = 7([a,0]) N (AU B)

= (v([a, b)) N A) U (7([a, b)) N B),
— either (y([a,b]) N A) =0 or (y([a,b]) N B) = 0.

i.e. v([a,b]) lies entirely in either A or B.

This implies that there does not exist any path in X joining a point in A to a point in B, contrary
to the assumption that X is path connected.

Theorem If X is a connected open subset of the Euclidean space [E”, then X is path-connected.

Proof Given z € X, let U(x) be the collection of points of X defined by

U(x) ={y € X | y can be joined to x by a path in X}.
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Then U(x) # 0 and U(z) is a path connected subset (component) of X.
Claim For each z € X, U(z) is open in X.

Proof of Claim Let y € U(x), since X is open in E", there exists a ball B,(y) such that
B.(y) C X.If z € B,.(y), since z can be joined to x by a path in X and U(x) is a path-connected
component of X, we must have z € U(z) and B,(y) C X. This implies that U(x) is open in X.

Claim For each z € X, U(z) is closed in X.
Proof of Claim Since
X\U(x) = U U(y) = union of open subset U(y) of X,
yeX\U(z)
X\ U(x) is open in X and thus U(z) is closed in X.

Since X is connected and U(x) # 0, we must have U(z) = X which implies that X is path-
connected.

The converse is not true: the topologist’s sine curve is connected but not path-connected.

Example Let Z = {(,sin(1/2)) |0 <2 <1}, Y = {0} x [~1,1] and X =Y U Z C R? be the
topologist’s sine curve. Since Z is path-connected, it is connected and Z = X is connected.

To see why it’s not path-connected, suppose f : [0,1] — X is continuous and f(0) = (0,0),
f(1) = (1,sin1).
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Let m,, m, : X — R be projection maps to the x— and y-coordinates respectively. Since 7, o f
is continuous on [0, 1], 7, o f(0) =0 < 1 =7, o f(1), so its image im (7, o f) is the whole [0, 1]
by the intermediate value theorem and hence, Z C im (f). Pick points tg, t1, ta, ... € [0, 1] such

that f(t,) = ((2n7r + g)—l, 1) :

Since [0, 1] is compact, m, o f is uniformly continuous. So for ¢ = 1 > 0, there exists § > 0 such
that whenever ¢, u € [0,1] satisfy |t —u| < 6, we have |7, (f(t)) — m,(f(u))| < 1.

Since {t; }7°, is an infinite sequence in the compact set [0, 1], it contains a convergent subsequence,
which is again denoted by {tx}3,, and with the ¢ > 0, there is an m € N such that if n > m,
then |t,, —t,] <.

Since Z C im (f), f(tm) = ((2m7r + g)_l, 1) and f(t,) = ((2n7r + g)_l, 1) , there’s a point u

3
between t,, and t, such that f(u) = ( (2mnm + g)*l, —1). Then t,, and u satisfy |t,,, — u| <
[ty — tn| < 0, but |7, (f(tm)) — my(f(w))| = |1 — (=1)] =2 > 1 which is a contradiction.
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