
Topology Study Guide 2 Fall 2022

Closed Bounded Subsets of En

Definition A set C ⊂ En is called a bounded subset of En if there exists a ball Br(p) = {x ∈
En | |x− p| < r} such that C ⊂ Br(p).

Definition Let X be a set topological space and let F = {U | U ⊆ X} be a collection of subsets
of X. Then F is called a cover of X if The union of the elements of F is all of X, i.e.⋃

U∈F

U = X.

F is called an open cover of X if

(1) every U ∈ F is an open subset of X.

(2) The union of the elements of F is all of X, i.e.⋃
U∈F

U = X.

F ′ is called a subcover of F if

(1) F ′ ⊆ F

(2) The union of the elements of F ′ is all of X, i.e.⋃
U∈F ′

U = X.

F ′ is called a finite subcover of F if

(1) F ′ is a subcover of F

(2) F ′ contains finite number of elements of F .

Theorem A subset X of En is closed and bounded if and only if every open cover F of X (with
the induced topology) has a finite subcover.

Motivated by this result we make the following definition.

Definition A topological space X is compact if every open cover of X has a finite subcover.

Remark With this terminology, the preceding Theorem can be restated as follows.

The closed bounded subsets of a Euclidean space are precisely those subsets which (when given
the induced topology) are compact.

Properties of Compact Spaces

(Heine-Borel Theorem) A closed interval [a, b] of the real line R is compact.

Proof Let F be an open cover of [a, b]. Define a subset X of [a, b] by

X = {x ∈ [a, b] | [a, x] is contained in the union of a finite subfamily of F}.

Since a ∈ X and X ⊆ [a, b], X ̸= ∅ and is bounded above by b, so s = supX exists.

Claim
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� s ∈ X, i.e [a, s] is contained in the union of a finite subfamily of F .

Proof Let O ∈ F such that s ∈ O. Since O is open, we can choose ε > 0 such that
(s − ε, s] ⊆ O. Also since s = supX, [a, s − ε/2] is contained in the union of some finite
subfamily F ′ of F , [a, s] = [a, s− ε/2]∪ (s− ε, s] is contained in the union F ′ ∪{O}. This
shows that s ∈ X.

a bss− ε

s− ε/2

� s = b

Proof Let O ∈ F such that s ∈ O. Suppose that s < b, there is ε > 0 such that (s− ε, s+
ε) ⊆ O.

Since s = supX, [a, s − ε/2] is contained in the union of some finite subfamily F ′ of F ,
[a, s+ ε/2] = [a, s− ε/2] ∪ (s− ε, s+ ε/2] is contained in the union F ′ ∪ {O}. This shows
that s < s+ ε/2 ∈ X and contradicting the fact that s = supX. Therefore s = b and all of
[a, b] is contained in the union F ′ ∪ {O}.

a bss− ε s+ ε

s+ ε/2

“Subdivision” Proof of Heine-Borel Theorem

Suppose that the Heine-Borel Theorem is false. Let F be an open cover of [a, b] which does not
contain a finite subcover.

� Set I1 = [a, b].

� Subdivide [a, b] into 2 closed subintervals of equal length [a,
1

2
(a + b)] and [

1

2
(a + b), b]. At

least one of these must have the property that it is not contained in the union of any finite

subfamily of F . Select one of [a,
1

2
(a+ b)], [

1

2
(a+ b), b] which has this property and call it

I2.

� Now repeat the process, bisecting I2 and selecting one half, called I3, which is not contained
in the union of any finite subfamily of F .

� Continuing in this way, we obtain a nested sequence of closed intervals

I1 ⊇ I2 ⊇ I3 ⊇ . . . with the length of In equals |In| =
b− a

2n−1
∀n = 1, 2, . . .

� For each n ∈ N, let xn be the left-hand end point of In. Since the sequence {xn} is monotonic
increasing and bounded above, p = sup{xn | n ∈ N} exists. For each n ∈ N, since xn ∈ In
and p = lim

k→∞
xk,

a = x1 I1 bx2 I1 x3 · · · xn p

Inp− ε p+ ε

|xn − p| ≤
∞∑
k=n

|xk − xk+1| ≤
∞∑
k=n

b− a

2k
=

b− a

2n−1
= |In| =⇒ p ∈ In

Page 2



Topology Study Guide 2 (Continued)

and since lim
n→∞

|In| = 0, we have
∞⋂
n=1

In = {p}.

� Since p ∈ [a, b], there is an open set O ∈ F , an ε > 0 and an n ∈ N such that p ∈ O,
(p− ε, p+ ε)∩ [a, b] ⊆ O and |In| < ε. Also since p ∈ In, In ⊆ (p− ε, p+ ε)∩ [a, b] ⊆ O, i.e.
In is contained in a single element of F , which is a contradiction to the choice of In.

Corollary A closed rectangular box
n∏

k=1

[ak, bk] of Rn is compact.

Theorem If X is a compact topological space and if f : X → Y is an onto continuous function,
then Y is compact.

Remark Compactness is a topological property, i.e. if X is compact and if X is homeomorphic
to Y, then Y is compact.

Proof Let F be an open cover of Y. For each O ∈ F , since f : X → Y is an onto continuous
function, f−1(O) is an open subset of X and

G = {f−1(O) | O ∈ F}

is an open cover of X, and the compactness of X implies that G contains a finite subcover, say

X = f−1(O1) ∪ · · · ∪ f−1(Ok).

Next since f : X → Y is an onto function, we have

f(f−1(Oi)) = Oi for 1 ≤ i ≤ k and Y =
k⋃

i=1

f(f−1(Oi)) =
k⋃

i=1

Ok.

So {Oi | 1 ≤ i ≤ k} is a finite subcover of F . This shows that Y is compact.

Theorem If X is a compact topological space and if C is a closed subset of X, then C is compact.

Proof Let F be a family of open subsets of X that covers C, i.e.

C ⊆
⋃

F =
⋃
O∈F

O.

Since (X \ C)∪F is an open cover of X and since X is compact, there exist O1, O2, . . . , Ok ∈ F
such that

X =

(
k⋃

i=1

Oi

)
∪ (X \ C) =⇒ C ⊆

k⋃
i=1

Oi

and {Oi | 1 ≤ i ≤ k} is a finite subcover of F . This shows that C is compact.

Definition A metric or distance function on a set X is a real-valued function d : X ×X → R
defined on the Cartesian product X ×X such that for all x, y, z ∈ X:

(a) d(x, y) ≥ 0 and equality holds if and only if x = y;

(b) d(x, y) = d(y, x);

(c) d(x, y) + d(y, z) ≥ d(x, z).
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A set X together with a metric d on it, usually denoted (X, d), is called a metric space (generated
by B = {Br(p) | p ∈ X, 0 < r < 1}).
Definition A topological space X is called a Hausdorff space if two distinct points can always
be surrounded by disjoint open sets, i.e.

∀ p ̸= q ∈ X, ∃ open subsets U, V of X such that p ∈ U, q ∈ V and U ∩ V = ∅.

Theorem If A is a compact subset of a Hausdorff space X, and if x ∈ X \ A, then there exist
disjoint neighborhoods of x and A. Therefore a compact subset of a Hausdorff space is closed.

Proof For each z ∈ A, since X is Hausdorff, let Uz and Vz be disjoint open subsets such that
x ∈ Uz and z ∈ Vz. Since

A ⊆
⋃
z∈A

Vz,

F = {Vz | z ∈ A} is an open cover of A, and since A is compact there exist a finite subcover
{Vzi | zi ∈ A, for each 1 ≤ i ≤ k} of F such that

A ⊆
k⋃

i=1

Vzi .

Let V =
k⋃

i=1

Vzi . Since Vzi ∩ Uzi = ∅ and x ∈ Uzi for each 1 ≤ i ≤ k, the sets U =
k⋂

i=1

Uzi and V

are disjoint open neighborhoods of x and A.

Theorem If X is a compact space, Y is a Hausdorff space and f : X → Y is a one-to-one, onto
and continuous function, then f : X → Y is a homeomorphism.

Proof If C is a closed subset of X, since X is compact and f : X → Y is one-to-one, onto and

continuous, C is compact in X and
(
f−1
)−1

(C) = f(C) is compact and consequently closed in
Y. So f : X → Y takes closed sets to closed sets which proves that f−1 : Y → X is continuous
and f : X → Y is a homeomorphism.

(Bolzano-Weierstrass Property) An infinite set of points in a compact space must have a
limit point, i.e. If S is an infinite subset of a compact space X, then S ′ ∩X ̸= ∅.
Proof Let X be a compact space and let S be a subset of X which has no limit point, i.e.

S ′ ∩X = ∅.

For each x ∈ X, since x /∈ S ′, there is an open neighborhood O(x) of x such that

O(x) ∩ S \ {x} = ∅ =⇒ O(x) ∩ S =

{
∅ if x /∈ S

{x} if x ∈ S

By the compactness of X, the open cover {O(x) | x ∈ X} has a finite subcover. But each set
O(x) contains at most one point of S and therefore S must be a finite set.

Theorem A continuous real-valued function defined on a compact space is bounded and attains
its bounds.

Proof If f : X → R is continuous and if X is compact, then f(X) is compact. Therefore f(X)
is bounded closed subset of R by a preceding theorem and there exist x1, x2 ∈ X such that

f(x1) = sup(f(X)) and f(x2) = inf(f(X)).
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(Lebesgue’s Lemma) Let X be a compact metric space and let F be an open cover of X.
Then there exists a real number δ > 0 (called a Lebesgue number of F ) such that any subset of
X of diameter less than δ is contained in some member of F .

Definition Let A, B be subsets of the metric space (X, d). Then the diameter of A is defined by

diam (A) = sup
x, y∈A

d(x, y)

and the distance d(A,B) between A and B is defined by

d(A,B) = inf
x∈A, y∈B

d(x, y).

Proof If Lebesgue’s Lemma is false, there exists a sequence {An ̸= ∅ | n ∈ N} of subsets of X
such that

� An ̸⊆ U for each U ∈ F , n ∈ N.
� d(An) = diam (An) ↘ 0 ( diameter of An deceases to 0).

For each n = 1, 2, . . . , choose a point xn ∈ An. Then the sequence {xn} contains

� either finitely many distinct points (in which case some point repeats infinitely times)

� or infinitely many distinct points (in which case {xn} has a limit point since X is compact).

Denote the repeated point, or limit point, by p. Then there is a subsequence {xnk
} of {xn}

converging to p. Since p ∈ X and F is an open cover of X, there is an open set U ∈ F
containing p. Choose ε > 0 such that Bε(p) ⊆ U, and choose an integer k large enough so that:

(a) d(Ank
) < ε/2 =⇒ d(xnk

, x) < ε/2 for all x ∈ Ank
, and

(b) d(xnk
, p) < ε/2 ⇐⇒ xnk

∈ Bε/2(p).

U

p

xnk

Ank

ε/2

ε

Thus we have

d(x, p) ≤ d(x, xnk
) + d(xnk

, p) < ε for all x ∈ Ank
=⇒ Ank

⊆ Bε(p) ⊆ U.

This contradicts our initial choice of the sequence {An}.
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Product Spaces

Definition Let X and Y be topological spaces and let B denote the family of all subsets of
X × Y of the form U × V, where U is open in X and V is open in Y.

Since

�

⋃
U×V ∈B

U × V = X × Y,

� (U1 × V1) ∩ (U2 × V2) = (U1 ∩ U2)× (V1 ∩ V2) ∈ B for any U1 × V1, U2 × V2 ∈ B,

(U1 ∩ U2)× (V1 ∩ V2)

U2

V1

V2

U1

B is a base for a topology on X × Y. This topology is called the product topology, and the set
X × Y, when equipped with the product topology, is called a product space.

In general, if X1, X2, . . . , Xn are topological spaces, the product topology on X1×X2×· · ·×Xn

is the topology generated by the base B = {U1 × U2 × · · · × Un | Ui is open in Xi, 1 ≤ i ≤ n}.
The functions πi : X1 × · · · × Xi × · · · × Xn → Xi defined by πi(x1, · · · , xi, · · · , xn) = xi for
1 ≤ i ≤ n, are called projections.

Theorem If X × Y has the product topology T then the projections are continuous functions
and they take open sets to open sets. The product topology T is the smallest topology on X×Y
for which both projections are continuous.

Proof Suppose U is an open subset of X and V is an open subset of Y, since π−1
1 (U) = U × Y

and π−1
2 (V ) = X × V are open in the product topology T , π1 and π2 are continuous.

Since the product topology T is generated by the base B = {U×V | U is open in X, V is open in Y },
and since π1(U×V ) = U is open inX, π2(U×V ) = V is open in Y for each U×V ∈ B, projections
π1 and π2 are open mappings.

Let T ′ be a topology onX×Y, so that both projections are continuous. So π−1
1 (U)∩π−1

2 (V ) ∈ T ′

for any open subsets U of X and V of Y, and since

U × V = (U × Y ) ∩ (X × V ) = π−1
1 (U) ∩ π−1

2 (V ) ∈ T ′ =⇒ T ⊆ T ′.

This proves that the product topology T the smallest topology on X × Y for which both
projections are continuous.

Theorem A function f : Z → X × Y is continuous if and only if the two composite functions
(coordinate functions) π1 ◦ f : Z → X, π2 ◦ f : Z → Y are both continuous.

Proof (=⇒) If f : Z → X × Y is continuous, then π1 ◦ f and π2 ◦ f are continuous, by the
continuity of the projections π1, π2.
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X

Y

U︸ ︷︷ ︸

V



π−1
1 (U)

π−1
2 (V )

U × V

(⇐=) If both π1 ◦ f and π2 ◦ f are continuous, then f : Z → X × Y is continuous since for each
basic open set U × V of X × Y,

f−1(U × V ) = (π1 ◦ f)−1(U) ∩ (π2 ◦ f)−1(V ) is open in Z.

Theorem The product space X × Y is a Hausdorff space if and only if both X and Y are
Hausdorff.

Proof (=⇒) Suppose that X × Y is Hausdorff. Given distinct points x1, x2 ∈ X, we choose a
point y ∈ Y and find disjoint basic open sets U1×V1, U2×V2 in X×Y such that (x1, y) ∈ U1×V1

and (x2, y) ∈ U2 × V2.

Then U1, U2 are disjoint open neighborhoods of x1 and x2 in X. Therefore X is a Hausdorff
space.

The argument for Y is similar.

(⇐=) Suppose that X and Y are both Hausdorff spaces. Let (x1, y1) and (x2, y2) be distinct
points of X × Y. Then either x1 ̸= x2 or y1 ̸= y2 (or both).

If x1 ̸= x2, since X is Hausdorff, there are disjoint open sets U1, U2 in X such that x1 ∈ U1 and
x2 ∈ U2. Since (x1, y1) ∈ U1 × Y, (x2, y2) ∈ U2 × Y and (U1 × Y ) ∩ (U2 × Y ) = ∅, X × Y is a
Hausdorff space.

The argument for y1 ̸= y2 is similar.

Lemma Let X be a topological space and let B be a base for the topology of X. Then X is
compact if and only if every open cover of X by members of B has a finite subcover.

Proof (=⇒) This is obvious since basis elements are open.

(⇐=) Suppose that every open cover of X by members of B has a finite subcover, and let F be
an arbitrary open cover of X.

Since B is a base for the topology of X, each member of F is a union of members of B. Let B′

denote the family of those members of B which are used in this process.

By construction we have ⋃
B∈B′

B =
⋃
U∈F

U = X
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so B′ is an open cover of X (by members of B) and must therefore contain a finite subcover.

For each basic open set in this finite subcover, we select a single member of F which contains
it. This gives a finite subcover of F and shows that X is compact.

Theorem The product space X × Y is compact if and only if both X and Y are compact.

Proof (=⇒) If X × Y is compact, then both X and Y are compact since the projections
π1 : X × Y → X, π2 : X × Y → Y are onto and continuous functions.

(⇐=) Suppose both X and Y are compact spaces and let F be an open cover of X×Y by basic
open sets of the form U × V, where U is open in X and V is open in Y.

For each x ∈ X, consider the subset {x} × Y of X × Y with the induced topology. It is easy to
check that

π2|{x}×Y : {x} × Y → Y

is a homeomorphism. In other words {x} × Y is just a copy of Y in X × Y which lies ‘over’ the
point x. So {x} × Y is compact and we can find a finite subfamily {Ux

i × V x
i | 1 ≤ i ≤ nx} of F

whose union contains {x} × Y. Since x ∈ Ux
i for each 1 ≤ i ≤ nx, U

x = ∩nx
i=1U

x
i ̸= ∅ and

Ux × Y ⊆
nx⋃
i=1

Ux
i × V x

i ,

the union of these sets contains more than {x}, it actually contains all of Ux × Y.

X

x

Ux

Y

X × Y
Ux × Y

{x} × Y

Since the family {Ux | x ∈ X} is an open cover of X, we can select a finite subcover {Uxj | 1 ≤

j ≤ s} of X such that X =
s⋃

i=j

Uxj and

X × Y =
s⋃

j=1

(Uxj × Y ) ⊆
s⋃

j=1

nxj⋃
i=1

(
U

xj

i × V
xj

i

)
this implies that X × Y is compact since it can be covered by a finite subfamily {Uxj

i × V
xj

i |
1 ≤ j ≤ s, 1 ≤ i ≤ nxj

} of F .

Theorem A subset of En is compact if and only if it is closed and bounded.
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Connectedness

Definition Let X be a topological space. A separation of X is a pair U, V of disjoint nonempty
open subsets of X whose union is X. The space X is said to be connected if there does not exist
a separation of X.

A space X is disconnected if there exists a separation U, V of X, or equivalently if there are
subsets A, B of X such that

A ̸= ∅, B ̸= ∅, A ∪B = X, Ā ∩B = A ∩ B̄ = ∅.

Note that A ∪ B = X, Ā ∩ B = A ∩ B̄ = ∅ =⇒ Ā ∪ B = A ∪ B̄ = X and the sets A = X \ B̄
and B = X \ Ā are disjoint nonempty open (and closed) subsets of X.

Remark A space X is connected if and only if the only subsets of X that are both open and
closed in X are the empty set and X itself.

Proof (=⇒) If A is a nonempty proper subset of X (i.e. A ⊊ X) which is both open and closed
in X, then the sets U = A and V = X \ A constitute a separation of X, since

A, B are open (and closed), disjoint, nonempty, and A ∪B = X.

(⇐=) If U and V form a separation of X, then U ̸= ∅, U ̸= X, and U = X \ V is both open and
closed in X.

Theorem The real line R is a connected space.

Proof Suppose R = A ∪B, where A ̸= ∅, B ̸= ∅ and A ∩B = ∅.
Choose points a ∈ A, b ∈ B and (without loss of generality) suppose that a < b. Let

Let X = {x ∈ A | x < b} and let s = supX ≤ b.

Since R = A ∪B, either s ∈ A, or s /∈ A.

� If s ∈ A, then s ⪇ b since b ∈ B and A ∩ B = ∅. Also since s = supX, we have (s, b) ⊆ B
which implies that s ∈ B′ ⊆ B̄ and thus A ∩ B̄ ̸= ∅.

� If s /∈ A, then s ∈ B since A ∩ B = ∅. Also since s = supX, we have s ∈ X ′ ⊆ A′ ⊆ Ā and
thus Ā ∩B ̸= ∅.

Remark If we replace the real line R by an interval I in the proof, we can show that any interval
I is connected.

Theorem Let X be a nonempty subset of R. Then X is connected if and only if X is an interval.

Proof (=⇒) If X is not an interval, then we can find points a, b ∈ X and a point p /∈ X such
that a < p < b.

Let A = {x ∈ X | x < p} and let B = X \ A =⇒ A ̸= ∅, B ̸= ∅ and X = A ∪B.

However since X = X̄ = Ā ∪ B̄, Ā ⊆ X, B̄ ⊆ X, and since p /∈ X, note that

� if x ∈ Ā, then x ⪇ p =⇒ Ā = A =⇒ Ā ∩B = A ∩B = ∅,
� if x ∈ B̄, then p ⪈ x =⇒ B̄ = B =⇒ A ∩ B̄ = A ∩B = ∅.

This implies that X is not connected.

Theorem The following conditions on a space X are equivalent:

Page 9



Topology Study Guide 2 (Continued)

(a) X is connected.

(b) X and ∅ are the only subsets of X which are both open and closed.

(c) X cannot be expressed as the union of two disjoint nonempty open sets.

(d) There are no onto continuous function from X to a discrete space which contains more than
one point.

Proof

[(a) ⇐⇒ (b)] done as in a preceding Remark above.

[(b) ⇐⇒ (c)] done as in the Definition.

[(c) ⇒ (d)] Suppose (c) is satisfied, and let Y be a discrete space with more than one point and
let f : X → Y be an onto continuous function.

Break up Y as a union U∪V of two disjoint nonempty open sets. Then X =
[
f−1(U)

]
∪
[
f−1(V )

]
which is the union of two disjoint nonempty open sets, contradicting (c).

[(d) ⇒ (a)] Let X be a space which satisfies (d) and suppose X is not connected. There exist
A, B ⊆ X such that

A ̸= ∅, B ̸= ∅, A ∪B = X and Ā ∩B = A ∩ B̄ = ∅.

Since Ā, B̄ are closed, and A = X \ B̄, B = X \ Ā, A, B are also open subsets of X. Define a
function f from X to the subspace {−1, 1} of R by

f(x) =

{
−1 if x ∈ A

1 if x ∈ B.

Then f is continuous and onto, contradicting (d) for X.

Theorem If X is a connected space and if f : X → Y is an onto continuous function, then Y is
connected.

Proof If A is a subset of Y which is both open and closed, then f−1(A) is both open and closed
in X. Since X is connected, f−1(A) is either X or ∅, which implies that A is Y or ∅. This proves
that Y is connected.

Remark Replacing Y by the subspace f(X) of Y, the proof implies that if X is a connected
space and if f : X → Y is a continuous function, then f(X) is connected.

Corollary If h : X → Y is a homeomorphism, then X is connected if and only if Y is connected.
In brief, connectedness is a topological property of a space.

Theorem Let X be a topological space and let Z be a subset of X. If Z is connected and if Z
is dense in X (i.e. Z̄ = X), then X is connected.

Proof Let A be a nonempty subset of X which is both open and closed. Since Z is dense in X,
so X = Z̄ = Z ∪ Z ′ and we claim:

U ∩ Z ̸= ∅ for each nonempty open subset U of X.

Claim holds since

if U ∩ Z = ∅ =⇒ U ∩ Z ′ = ∅ =⇒ U = U ∩X = U ∩ (Z ∪ Z ′) = (U ∩ Z) ∪ (Z ∩ Z ′) = ∅

Hence we have
A ∩ Z ̸= ∅.
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Since A is both open and closed in X, A ∩ Z is both open and closed in Z, and since Z is
connected and A ∩ Z ̸= ∅, we deduce that

A ∩ Z = Z =⇒ Z ⊆ A =⇒ X = Z̄ ⊆ Ā = A ⊆ X =⇒ A = X.

This implies that X is connected.

Remark Note that if Z is a connected subset of a topological space X, then Z is a connected
subset of the subspace Z̄. Replacing X by Z̄, the proof implies that Z̄ is connected. In fact, the
proof implies the following Corollary holds.

Corollary If Z is a connected subset of a topological space X, and if Z ⊆ Y ⊆ Z̄, then Y is
connected. In particular, the closure Z̄ of Z is connected.

Proof Since the closure of Z in Y is all of Y and by applying the preceding theorem to the pair
Z ⊆ Y, one can show that Y is connected.

Theorem Let F be a family of subsets of a space X whose union is all of X. If each member of
F is connected, and if no two members of F are separated from one another in X, then X is
connected.

Proof Let A be a subset of X which is both open and closed. We shall show that A is either
empty or equal to all of X.

For each Z ∈ F , since Z is connected and Z ∩A is both open and closed in Z, Z ∩A = ∅ or Z.

Since X =
⋃
Z∈F

Z, we must have

� either Z ∩ A = ∅ for all Z ∈ F =⇒ A = ∅,
� or there is a ZA ∈ F such that ZA ∩ A ̸= ∅ =⇒ ZA ∩ A = ZA and A ̸= ∅ =⇒ ZA ⊆ A.

Suppose that A ̸= ∅ and A ̸= X, since A, X \ A are disjoint open and closed nonempty subsets
of X, there exist ZA, ZX\A ∈ F such that

ZA∩A = ZA and ZX\A∩ (X \ A) = ZX\A =⇒ ZA ⊆ A and ZX\A ⊆ X \A =⇒ ZA∩ZX\A = ∅

contradicting to the assumption that no two members of F are separated from one another in
X, so X is connected.

Theorem If X and Y are connected spaces then the product space X × Y is connected

Proof For each x ∈ X and y ∈ Y, let Z(x, y) = ({x} × Y ) ∪ (X × {y}) and let F = {Z(x, y) |
x ∈ X, y ∈ Y }. Since {x} × Y and X × {y} are connected and since ({x} × Y ) ∩ (X × {y}) =
{(x, y)} ≠ ∅, ({x} × Y ) ∪ (X × {y}) is connected.
Also since no two members of F are separated from one another in X × Y, and since X × Y =⋃
Z(x,y)∈F

Z(x, y), the space X × Y is connected.
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X xx′

y′

y

Y Z(x, y)

Z(x′, y′)

X × Y

Definition An equivalence relation on a set X is a relation ∼ on X having the following three
properties:

� (Reflexivity) x ∼ x for every x ∈ X.

� (Symmetry) If x ∼ y, then y ∼ x.

� (Transitivity) If x ∼ y and y ∼ z, then x ∼ z.

The equivalence class of an element x ∈ X, denoted by [x], is the set defined by

[x] = {y ∈ X | y ∼ x}.

It is easy to see that distinct equivalence classes are disjoint, i.e [x] ∩ [y] is either ∅ or all of [x].

Definition Given X, define an equivalence relation on X by setting x ∼ y if there is a connected
subset of X containing both x and y. The equivalence class Cx of an element x ∈ X is called a
component (or “connected component”) of X.

Remark

� Let C and D be connected subsets of X such that C ∩D ̸= ∅. Then C ∪D is connected.

� For each x ∈ X, the (connected) component Cx is the largest connected subset containing
of x. Hence

Cx ∩ Cy = either ∅ or Cx = Cy ∀x, y ∈ X.

Theorem Let X be a topological space and let Cx denote the component of X containing x ∈ X.
Then

� For each x ∈ X, the component Cx is closed in X.

� For any x, y ∈ X, Cx∩Cy is either an empty set or all of Cx = Cy, i.e. distinct components
are separated from one another in the space.

Proof Let Cx be a component of X containing x. Then Cx is connected, and so C̄x is connected
by a preceding Corollary. Since Cx is an equivalence class of X, we must have Cx = C̄x and Cx

is closed.
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If Cx, Cy are components of X such that Cx ∩ Cy ̸= ∅ then, since Cx ∪ Cy is a connected subset
of X containing both Cx and Cy, we must have Cx ∪ Cy = Cx and Cx ∪ Cy = Cy which implies
that Cx = Cy. So, distinct components are separated from one another in the space.

Joining Points by Paths

Definition Given points x and y of the topological space X, a path in X from x to y is a
continuous function γ : [a, b] → X of some closed interval in the real line into X, such that
γ(a) = x and γ(b) = y. A space X is said to be path-connected if every pair of points of X can
be joined by a path in X.

Remark One can define an equivalence relation on X by setting x ∼ y if there is a path in X
joining x to y. This is an equivalence relation since

� For each x ∈ X, the path γ defined by

γ(t) = x t ∈ [a, b]

is a path in X joining x to x.

� if γ is a path in X joining x to y, then −γ defined by

−γ(t) = γ(a+ b− t) t ∈ [a, b]

is a (reversed) path in X joining y to x.

� if α, β are paths in X joining x to y and y to z respectively, then γ defined by

γ(t) =


α(2t− a) if a ≤ t ≤ a+ b

2

β(2t− b) if
a+ b

2
≤ t ≤ b

is a path in X joining x to z.

The equivalence classes are called the components (or “path-connected components”) of X.

Theorem If X is a path-connected space, then X is connected.

Proof Suppose X = A ∪B is a separation of X.

Let γ : [a, b] → X be any path in X. Since γ is continuous and [a, b] is connected, the set γ([a, b])
is connected and, since

γ([a, b]) = γ([a, b]) ∩X = γ([a, b]) ∩ (A ∪B) = (γ([a, b]) ∩ A) ∪ (γ([a, b]) ∩B),

=⇒ either (γ([a, b]) ∩ A) = ∅ or (γ([a, b]) ∩B) = ∅.

i.e. γ([a, b]) lies entirely in either A or B.

This implies that there does not exist any path in X joining a point in A to a point in B, contrary
to the assumption that X is path connected.

Theorem If X is a connected open subset of the Euclidean space En, then X is path-connected.

Proof Given x ∈ X, let U(x) be the collection of points of X defined by

U(x) = {y ∈ X | y can be joined to x by a path in X}.
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Then U(x) ̸= ∅ and U(x) is a path connected subset (component) of X.

Claim For each x ∈ X, U(x) is open in X.

Proof of Claim Let y ∈ U(x), since X is open in En, there exists a ball Br(y) such that
Br(y) ⊆ X. If z ∈ Br(y), since z can be joined to x by a path in X and U(x) is a path-connected
component of X, we must have z ∈ U(x) and Br(y) ⊆ X. This implies that U(x) is open in X.

Claim For each x ∈ X, U(x) is closed in X.

Proof of Claim Since

X \ U(x) =
⋃

y∈X\U(x)

U(y) = union of open subset U(y) of X,

X \ U(x) is open in X and thus U(x) is closed in X.

Since X is connected and U(x) ̸= ∅, we must have U(x) = X which implies that X is path-
connected.

The converse is not true: the topologist’s sine curve is connected but not path-connected.

Example Let Z = {(x, sin(1/x)) | 0 < x ≤ 1}, Y = {0} × [−1, 1] and X = Y ∪ Z ⊂ R2 be the
topologist’s sine curve. Since Z is path-connected, it is connected and Z̄ = X is connected.

To see why it’s not path-connected, suppose f : [0, 1] → X is continuous and f(0) = (0, 0),
f(1) = (1, sin 1).
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Let πx, πy : X → R be projection maps to the x– and y-coordinates respectively. Since πx ◦ f
is continuous on [0, 1], πx ◦ f(0) = 0 < 1 = πx ◦ f(1), so its image im (πx ◦ f) is the whole [0, 1]
by the intermediate value theorem and hence, Z ⊂ im (f). Pick points t0, t1, t2, . . . ∈ [0, 1] such

that f(tn) =
(
(2nπ +

π

2
)−1, 1

)
.

Since [0, 1] is compact, πy ◦ f is uniformly continuous. So for ε = 1 > 0, there exists δ > 0 such
that whenever t, u ∈ [0, 1] satisfy |t− u| < δ, we have |πy(f(t))− πy(f(u))| < 1.

Since {tk}∞k=0 is an infinite sequence in the compact set [0, 1], it contains a convergent subsequence,
which is again denoted by {tk}∞k=0, and with the δ > 0, there is an m ∈ N such that if n > m,
then |tm − tn| < δ.

Since Z ⊂ im (f), f(tm) =
(
(2mπ +

π

2
)−1, 1

)
and f(tn) =

(
(2nπ +

π

2
)−1, 1

)
, there’s a point u

between tm and tn such that f(u) =

(
(2mπ +

3π

2
)−1,−1

)
. Then tm and u satisfy |tm − u| <

|tm − tn| < δ, but |πy(f(tm))− πy(f(u))| = |1− (−1)| = 2 > 1 which is a contradiction.
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